Sciences assessment criteria: Years 2 and 3 ## Criterion A: Knowing and understanding #### Maximum: 8 - i. describe scientific knowledge - ii. apply scientific knowledge and understanding to solve problems set in familiar and unfamiliar situations - iii. analyse information to make scientifically supported judgments. | Achievement
level | Level descriptor | |----------------------|--| | 0 | The student does not reach a standard indicated by any of the descriptors below. | | 1–2 | The student is able to: | | | i. recall scientific knowledge | | | ii. apply scientific knowledge and understanding to suggest solutions to problems set in familiar situations | | | iii. apply information to make judgments. | | | The student is able to: | | 3–4 | i. state scientific knowledge | | | ii. apply scientific knowledge and understanding to solve problems set in familiar situations | | | iii. apply information to make scientifically supported judgments. | | | The student is able to: | | | i. outline scientific knowledge | | 5–6 | ii. apply scientific knowledge and understanding to solve problems set in familiar situations and suggest solutions to problems set in unfamiliar situations | | | iii. interpret information to make scientifically supported judgments . | | 7–8 | The student is able to: | | | i. describe scientific knowledge | | | ii. apply scientific knowledge and understanding to solve problems set in familiar and unfamiliar situations | | | iii. analyse information to make scientifically supported judgments. | # Criterion B: Inquiring and designing #### Maximum: 8 - i. describe a problem or question to be tested by a scientific investigation - ii. outline a testable hypothesis and explain it using scientific reasoning - iii. describe how to manipulate the variables, and describe how data will be collected - iv. design scientific investigations. | Achievement
level | Level descriptor | |----------------------|--| | 0 | The student does not reach a standard identified by any of the descriptors below. | | 1–2 | The student is able to: i. state a problem or question to be tested by a scientific investigation, with limited success ii. state a testable hypothesis iii. state the variables iv. design a method, with limited success. | | 3-4 | The student is able to: i. state a problem or question to be tested by a scientific investigation ii. outline a testable hypothesis using scientific reasoning iii. outline how to manipulate the variables, and state how relevant data will be collected iv. design a safe method in which he or she selects materials and equipment. | | 5–6 | i. outline a problem or question to be tested by a scientific investigation ii. outline and explain a testable hypothesis using scientific reasoning iii. outline how to manipulate the variables, and outline how sufficient, relevant data will be collected iv. design a complete and safe method in which he or she selects appropriate materials and equipment. | | 7–8 | The student is able to: describe a problem or question to be tested by a scientific investigation outline and explain a testable hypothesis using correct scientific reasoning describe how to manipulate the variables, and describe how sufficient, relevant data will be collected design a logical, complete and safe method in which he or she selects appropriate materials and equipment. | ## Criterion C: Processing and evaluating ### Maximum: 8 - i. present collected and transformed data - ii. interpret data and describe results using scientific reasoning - iii. discuss the validity of a hypothesis based on the outcome of the scientific investigation - iv. discuss the validity of the method - v. describe improvements or extensions to the method. | Achievement
level | Level descriptor | |----------------------|---| | 0 | The student does not reach a standard identified by any of the descriptors below. | | | The student is able to: | | | i. collect and present data in numerical and/or visual forms | | | ii. accurately interpret data | | 1–2 | iii. state the validity of a hypothesis with limited reference to a scientific investigation | | | iv. state the validity of the method with limited reference to a scientific investigation | | | v. state limited improvements or extensions to the method. | | | The student is able to: | | 3–4 | i. correctly collect and present data in numerical and/or visual forms | | | ii. accurately interpret data and describe results | | | iii. state the validity of a hypothesis based on the outcome of a scientific investigation | | | iv. state the validity of the method based on the outcome of a scientific investigation | | | v. state improvements or extensions to the method that would benefit the scientific investigation. | | | The student is able to: | | | i. correctly collect, organize and present data in numerical and/or visual forms | | | ii. accurately interpret data and describe results using scientific reasoning | | 5-6 | iii. outline the validity of a hypothesis based on the outcome of a scientific investigation | | | iv. outline the validity of the method based on the outcome of a scientific investigation | | | v. outline improvements or extensions to the method that would benefit the scientific investigation. | | Achievement
level | Level descriptor | |----------------------|--| | 7–8 | The student is able to: | | | i. correctly collect, organize, transform and present data in numerical and/or visual forms | | | ii. accurately interpret data and describe results using correct scientific reasoning | | | iii. discuss the validity of a hypothesis based on the outcome of a scientific investigation | | | iv. discuss the validity of the method based on the outcome of a scientific investigation | | | v. describe improvements or extensions to the method that would benefit the scientific investigation. | # Criterion D: Reflecting on the impacts of science ### Maximum: 8 - i. describe the ways in which science is applied and used to address a specific problem or issue - ii. discuss and analyse the various implications of using science and its application in solving a specific problem or issue - iii. apply scientific language effectively - iv. document the work of others and sources of information used. | Achievement
level | Level descriptor | |----------------------|---| | 0 | The student does not reach a standard identified by any of the descriptors below. | | 1–2 | The student is able to: | | | i. state the ways in which science is used to address a specific problem or issue | | | ii. state the implications of the use of science to solve a specific problem or issue, interacting with a factor | | | iii. apply scientific language to communicate understanding but does so with limited success | | | iv. document sources, with limited success. | | | The student is able to: | | 3-4 | i. outline the ways in which science is used to address a specific problem or issue | | | ii. outline the implications of using science to solve a specific problem or issue, interacting with a factor | | | iii. sometimes apply scientific language to communicate understanding | | | iv. sometimes document sources correctly. | | | The student is able to: | | 5–6 | i. summarize the ways in which science is applied and used to address a specific problem or issue | | | ii. describe the implications of using science and its application to solve a specific problem or issue, interacting with a factor | | | iii. usually apply scientific language to communicate understanding clearly and precisely | | | iv. usually document sources correctly . | | Achievement
level | Level descriptor | |----------------------|--| | 7–8 | The student is able to: i. describe the ways in which science is applied and used to address a specific | | | problem or issue | | | ii. discuss and analyse the implications of using science and its application to solve a specific problem or issue, interacting with a factor | | | iii. consistently apply scientific language to communicate understanding clearly and precisely | | | iv. document sources completely . |